<u>A NATIONAL RETROFIT CHALLENGE</u> <u>TO MEET THE PARIS GOAL OF 1.5</u> <u>DEGREES</u>

RESNET CONFERENCE FEBRUARY 2019 NEW ORLEANS, LOUISIANA **NRDC**

DAVID B. GOLDSTEIN, PH.D. NATURAL RESOURCES DEFENSE COUNCIL DGOLDSTEIN@NRDC.ORG

PRESENTATION IS BASED ON A PAPER PUBLISHED IN THE PROCEEDINGS OF THE 2018 ACEEE SUMMER STUDY ON ENERGY EFFICIENCY IN BUILDINGS

CO-AUTHORS ARE PETER TURNBULL, PG&E, AND CATHY HIGGINS, NBI

HTTPS://WWW.NRDC.ORG/SITES/DEFAULT/FILES/PAPER_A-NATIONAL-RETROFIT-CHALLENGE-TO-MEET-THE-PARIS-GOAL-OF-15-DEGREES_2018-08-29.PDF

Climate Change: Melting Glaciers

Climate Change: Forest Fires

The U.S. and the world can meet the commitments of the Paris Agreement

- The U.S. is still bound by this agreement at least till November 2020
 - The next President could rejoin the agreement
 - States/provinces such as California and the Northwest are accelerating their efforts to cut emissions
 - Canada is part of the agreement
- The Agreement calls for limiting climate change to 2 degrees C and for pursuing efforts to limit it to 1.5 degrees
- There are strategic plans for what government, business, utilities and their regulators, religions, and citizens can do to meet this goal
- The best studies broadly agree: the goals can be met in economically attractive ways

This talk discusses the consequences of a two-step analytic process

First, model in detail what it takes to limit climate change to 2 degrees

https://www.nrdc.org/sites/default/files/americas-clean-energy-frontier-report.pdf

 Next, using the model results, estimate what else is needed to meet the stricter 1.5 degree limit

https://www.nrdc.org/experts/david-b-goldstein/part-2-stopping-15-degreeswhat-will-it-take

How can the U.S. achieve a 2-degree scenario?

Decarbonization of the U.S. economy relies on **four** carbon reduction strategies, to varying degrees:

- Deploying all cost-effective **energy efficiency** to reduce energy demand in buildings, industry, and transportation;
 - Modest retrofits are part of this scenario
- Deploying significant levels of renewable and other zero-carbon electric generation;
- Deploying broad electrification of buildings, industry, and vehicles;
- Decarbonizing remaining liquid fuel use through **low-carbon fuels**, such as bio-fuels and synthetic fuels, and carbon capture and sequestration on certain industries.

Additional measures must be taken to reduce non-carbon emissions, such as methane and HFCs. Some modeling also expands and enhances terrestrial carbon sinks (e.g. forests)

Only 6 key <u>additional</u> policies allow us to nearly meet the 1.5 degree goal

- Fast, deep retrofit of all buildings
- Smart growth and shared mobility
- "Strategic Energy Management" in Industry (ISO 50001)
- Saving energy in the supply chain
- Improved forestry practices
- Reducing methane leaks

This paper looks exclusively at RETROFITS

All of these policies promote job creation at scale, and enhance equitable economic development.

U.S. Pathways to Paris' Long-term Goals

How do we know we can meet the Paris Goal?

- California is already halfway there
 - Without really trying, especially until 2007
 - "LA has built its last freeway"—Executive Director of SCAG
- Countries around the world are finding that they can do much more than they thought once they make the effort
- US climate pollution is dropping about as fast as it would have had to if the 2009 climate bill had passed
- The world agreed to phase out refrigerants that cause climate change, an improvement that modelers didn't expect

Efficiency is First

- It is the largest resource--even when the analytic assumptions downplay its effectiveness
- It is the cheapest resource; it is the cleanest resource
- In new construction, we know we can get ZNE performance levels with little to no incremental cost. *Existing buildings: the challenge of our times*.
- High performance has side benefits: comfort, health, productivity, job creation, equity
- However: by calling these "side benefits," we tend to minimize them even though they may exceed—by 2x, 3x or more—the value of the energy savings taken alone

Energy Savings Alone is Not Enough

On average, the energy cost savings available for most building types at 50% energy savings <u>will not cover</u> retrofit costs

Building Type	Typical Utility Bill	\$ Savings at 50% reduction	Present Value of 50% savings*	Available funds for a retrofit	Funds/SF available
Residential	\$1.00/sf/yr		\$10/sf		\$10
SF home, 2000 sf		\$0.50/sf/yr		\$20,000	
Apartment, 1000 sf		\$0.50/sf/yr		\$10,000	
Commercial					
School, light load, 50,000 sf	\$2.00/sf/yr	\$1.00/sf/yr	\$20/sf	\$1,000,000	\$20
Office, moderate load, 30,000 sf	\$3.00/sf/yr	\$1.50/sf/yr	\$30/sf	\$900,000	\$30

*3% discount rate, 30 project life—more optimistic than usually used in efficiency analyses

Capturing Value Streams in Commercial Buildings

- In private commercial markets, we are beginning to see *de facto* evidence that the market values non-energy benefits. Consider 435 Indio Way, Sunnyvale, CA—a renovation to ZNE of a common building type from the 1970s
 - Incremental investment: \$50/sf
 - Incremental value increase: \$75/sf
 - Energy bill savings: ~\$1.50/sf
 - Rent premium: ~\$4.00/sf (2.7x higher than bill savings!)
- However:

(1) Value not accessible in public buildings (schools, government, etc.)

(2) Value not formally recognized by appraisal community

Achieving Scale with Residential Retrofits

- Area-wide demand side programs have been few but have been successful at reaching nearly all customers in an area
 - Delta Project, PG&E, 1990s; PP&L, 1980s
 - Both reached and succeeded with 85% of *all* existing customers
- Significant investments in workforce development and training will be required; substantial numbers of jobs will be created from such an effort.

Achieving Scale with Residential Retrofits II

- However, to reach 50% savings levels, entirely new lines of products are needed, requiring manufacturers engagement on space and water heating technologies, especially for heat pumps
 - It will be especially important to limit resistance strip heat for space and water heat to minimize impacts on:
 - > Behind the meter electric panel and wiring systems
 - Utility grid capacity and operations

"Industrializing" Retrofits

- Custom field assembly of buildings and component systems is widely viewed as antiquated and inefficient
- Energiesprong, a concept originating in The Netherlands, provides a factorybuilt whole-building recladding system
 - Covers the full building shell (walls, windows, roof, doors)
 - New mechanical systems integrated into new walls, old systems capped in place
 - Site work in just a few days (minimal disruption to occupants—days not months)
 - Scale of factory enterprise requires access to large pools of capital
- New home builders in the US are experimenting with mechanical "pods" built remotely and shipped to the home site; building design accommodates pod system

Decarbonizing Buildings: Key Issues

- Even with historically low natural gas prices, efficient electric heat pumps can provide water and space heat with little to no energy cost impact to customers.
- Today's heat pumps (water/space) rely on large resistance "backup" heaters which require ~3x the amperage of the actual heat pump
 - Upgrading the panel and wiring to accommodate dwarfs the cost of the appliances.
 - There are impacts to the power grid as well.
 - Resistance strips are unnecessary for the majority of the population by climate
 - Advanced heat pumps (e.g., CO2 based) could almost entirely eliminate strip heat
- Issue of possibly abandoning gas infrastructure: how to address?

Summary and Recommendations

- Fast, deep retrofits are a critical condition for meeting climate goals.
 - But current programs are as much as *two orders of magnitude too small*
 - There is good evidence to suggest that scale-up is feasible
 - Advocacy of this outcome turns on the importance of non-energy benefits to the building owner/user and to society
- Large-scale experience must be generated through a variety of retrofit programs that employ different approaches to addressing the issues identified in our paper.

Thank you!

Please contact us at:

David Goldstein <u>dgoldstein@nrdc.org</u> Cathy Higgins <u>higgins@newbuildings.org</u> Peter Turnbull <u>PWT1@pge.com</u>

for questions or comments